SPU TC2 Firmware Guide

Last revised: 3/22/23

Femtosense Confidential - Do Not Distribute

SPU Overview : Introduction

e The SPU is a self-contained sparse neural network accelerator with 1 MB
on-board SRAM to store parameters
o While the chip is powered down, parameters are to be kept in off-SPU nonvolatile storage

e The SPU connects to a host processor over SPI

o The host manages the state of the SPU, loads network parameters, and exchanges neural
network inputs and outputs with the SPU

e \While the network is running, parameters are not transferred, only input and

output data.
o Multiple networks can be run on the SPU simultaneously—they just all have to fit.

Femtosense Confidential - Do Not Distribute

SPU Overview : Typical System Diagram

VDD DVDD
0.8v 1.8-3.3V

Host uC % Femtosense SPU

1 MB Flash
(nonvolatile storage
for NN parameters)

SPI

Femtosense Confidential - Do Not Distribute

SPU Overview : Internal Organization

spi_sck
spi_mosi > SPI o,
spi_miso i
spi_ss
© SPU
= Core 1
rst > system reg
——> Router
spi_int <
4 SPU
osc_PADI . Core 2
(osc in, or ref clk)
2 PLL S
(o} domain
osc_ PADO «—

Femtosense Confidential - Do Not Distribute

spi_sck
spi_mosi SPI

spi_miso
spi_ss S0
Core 1

0OldD

SPU Overview : Major Components o = B

spi_int <€

4 SPU

osc_PADI ‘ iR
(osc in, or ref clk) SPU clk

PLL

2SO0

o SPI COntrO”eI’ 0sc_PADO «—— g

o Works using only the SPI clock itself, functional even if the PLL is off

o Controls system registers, which configure the PLL, the pads, and the SPI controller itself

o Programs, configures, and drives inputs to the SPU cores (this requires the SPU to be clocked
through the PLL)

e Oscillator pad
o Can be used to produce a clock from a 32KHz crystal, or can simply be used as an input pad
for a reference clock

e PLL

o Multiplies the clock coming from the oscillator pad, max multiplier 8192, bypassable

e SPU

o Contains two interconnected cores, each with 4 SIMD datapaths and 0.5MB of data memory
o Clocked by the PLL output, only accessible when a clock is present
o Memories can be put into retention or shut down to save power

Femtosense Confidential - Do Not Distribute

SPU Overview : POD

1.560+0.01 —~ ~—0.279
0.360
A1 corner +
) BN % |
] _r 8 8 8_ 0.400
1 0.335 e I
2.244+0.01 D SRS,
® OOO
D OPO
—~ ~———0.200 0.420

All dimensions in the drawing are mm. View is from bottom (ball array-side) of chip. Ball array is a regular grid at 420um
x-pitch, 400um y-pitch. Note offset to pin 1: array is centered in width of the chip but slightly off-center in its height. Ball
size is 250um. Recommended PCB pad size is 227um. Die thickness (not including balls) is 11 mil.

Femtosense Confidential - Do Not Distribute

SPU Overview : Pinout

PN #

ID

SPI_MOSI

VDD

VSS

SPI_SCK

SPI_MISO

RST

SPI SS

DVDD

VSSA

10

SPI INT

1

VDDA

12

0SC_PADI

13

VSS

14

VDD

@ @ @ Note: view is looking “down” through top
of chip—reflects PCB footprint

15

0SC_PAD

Femtosense Confidential - Do Not Distribute

SPU Overview : Power Supplies

e DVDD:1.8-3.3VIO Power
e VDD : 0.8V nominal core power
e VDDA : 0.8V PLL power

(@]

The PLL is ideally supplied by an isolated
power supply. We have been advised that
this isolation is not usually necessary for low
power parts. EVK2 omits the ferrites
completely but preserves the .1uF and
.01uF caps. The VSS ferrite is less
important than the VDD one. See ideal
isolation circuit to the right:

The PLL's two analog supplies should be filtered with two series ferrite
beads and two shunt 0.1uF and @.01uF capacitors. The ferrite on VSS is
preferred but optional. Adding the ferrite on VSS converts supply noise
to substrate noise as seen by the PLL. The PLLs are designed to be
relatively insensitive to supply and substrate noise, so the presence

of this ferrite is a second order issue.

VDD ———@@AQ@@-———+——————p———— VDDA
ferrite | |
0.1uF — —— 0.01uF
| |
VSS ——@ae@@-——+—————+———— VSSA
ferrite

The ferrite beads should be similar one of the following from Murata:

Part number R@DC Z@10MHz Z@1@@MHz Z@1GHz size
BLM18BEG6@1SN1 * 0.35 200 600 0603
BLM18PG471SN1 0.20 130 470 0603
BLM18KG601SN1 0.15 160 600 0603
BLM18AG601SN1 0.38 180 600 0603
BLM18AG102SN1 0.50 280 1000 0603
BLM18TG601TN1 0.45 190 600 0603
BLM15AG601SN1 0.60 200 600 0402
BLM15AX601SN1 * 0.34 190 600 0402
BLM15AX102SN1 0.49 250 1000 0402
BLMO3AX601SN1 0.85 120 600 0201

* preferred choice

Similar ferrite beads are also available from Panasonic. The key
characteristics to select are:

- DC resistance less than 0.40 ohms

- impedance at 10MHz equal to or greater 180 ohms

- impedance at 100MHz equal to or greater than 608 ohms

The capacitors should be mounted as close to the package balls as
possible.

Femtosense Confidential - Do Not Distribute

Using the SPU

Femtosense Confidential - Do Not Distribute

SPU Usage : Basic Usage Outline

Part 1: Compile the model and load to NVM

1. Compile the neural network model, or use a Femtosense-provided precompiled model. See femtobehavpub and
femtocrux guides. Outputs:
o Compiled model bitstreams, to be handled by firmware (initial release: SD programming files)
o Mailbox identifiers for inputs and outputs (see terminal output from femtobehavpub). This is always the
same for single models with one input and output.
2. Load the model binary in the NVM (initial release: the SD card. Future: the flash chip on the EVK board)

Femtosense Confidential - Do Not Distribute

SPU Usage : Basic Usage Outline

Part 2: Run the SPU

1. Power on the SPU
2. Configure the osc pad + PLL to produce the application’s required frequency (per information from the compiler
and desired duty cycle. See subsequent pages and reference firmware)
3. Transfer compiled bitstream (contains neural network parameters + other config) from NVM to the SPU
4. Streaming data. Repeat:
a. Send input frame (e.g. audio spectral frame, or chunk of time-series data) to the appropriate mailbox. The
SPU will automatically start processing the frame
b. Wait for the SPU to finish processing. Either wait for the SPI_INT interrupt or sleep for a fixed amount of
time.
c. Receive output frame

Femtosense Confidential - Do Not Distribute

SPU Usage : Duty Cycle Considerations

e More variations are possible, but the following slides present a few possible operating modes

e In “Steady Processing, Steady 10", the SPU is processing almost all the time. The host is
regularly sending/receiving audio samples to/from the SPU (e.g. as soon as they are
sampled/just before they are needed). The SPU buffers the received audio data into frames (one
set of neural network inputs) and starts processing when one is complete, producing a complete
frame that is drained as outputs are sent. This style of processing requires the lowest max
frequency for the SPU possible, limiting peak current. But it incurs the maximum processing
latency of a single frame’s duration.

e In “Steady Processing, Bursting 10”, the SPU is still processing all the time, but the 10 events
are more clustered. This requires the host to buffer up data, but might be more convenient.

e In “Bursting processing, Bursting 10”, the SPU clock is boosted during the processing phase
to try to reduce the processing latency as much as possible.

CAVEAT: (Steady, Bursting) is effectively what the EVK examples ship with. (Bursting, Bursting) is
possible with firmware manipulation. (Steady, Steady) requires a compiler update to be shipped later.

Femtosense Confidential - Do Not Distribute

"Steady Processing, Steady 10

samples that
make up input frame 1

audo sample, host 0 SPU WHUHLHHH(rﬂﬂﬂﬂlﬂﬂﬂjﬂgﬂﬂﬂﬂﬂﬂUUEHUHUHHUH

-/

input frame complete, internal to SPU i
SPU processing [1 ‘ \ 2 J ‘ 3 J
SPU clock on all the time, as slow as possible to make processing delay = 1 frame]

output frame complete, internal to SPU

“JH 2 :
PIaruuuvrennoinl

J

B 2
samples that 2

make up output frame 1
one frame of

processing latency

Femtosense Confidential - Do Not Distribute

audio samples, host to SPU

input frame complete, internal to SPU
SPU processing

SPU clock

output frame complete, internal to SPU

"Steady Processing, Bursting 10"

samples that
make up input frame 1

e

T i I

=3

1 || 2 ||

on all the time, as slow as possible to make processing delay = 1 frame

I i

: samples that 2
one frame of i make up output frame 1

processing latency

Femtosense Confidential - Do Not Distribute

W

1177

"Bursting Processing, Bursting 10"

samples that
make up input frame 1

2
= ——
audio samples, host to SPU ‘ ‘ ’ ‘ l ’
input frame complete, internal to SPU H F H
SPU processing | 1 l ‘ 2 ’ ‘ 3 ’
SPU clock [slow I fast I slow } [slow I fast I slow] [slow fast I slow]
output frame complete, internal to SPU h :2 3
| | |
S —
samples that 2

| | make up output frame 1
e

processing latency
dictated by SPU clock speed

Femtosense Confidential - Do Not Distribute

SPU Usage : Clocking Considerations

e The PLL takes a maximum of 500 reference clock cycles to lock to a new frequency

o Practical re-lock time TBD
o This is only applicable if the VCO frequency is modified. Modifying the output dividers or

gating the clock is practically instantaneous
o The VCO frequency should interpolate smoothly if the frequency is modified, but exact

frequency is undefined until lock
Clocking Schemes

e Reference clock, no multiplication (max core frequency ~ 80MHz, pad limited)
o Oscillator off, bypassed
o PLL off, bypassed
e Reference clock, multiplication (max core frequency ~ 500MHz, timing limited)
o Oscillator off, bypassed
o PLL on, multipliers set as needed
e Clock from crystal, multiplication (max core frequency = 32KHz * 8192 = 256MHz)
o Oscillator on
o PLL on, multipliers set as needed

Femtosense Confidential - Do Not Distribute

Femtosense-Provided Driver APIs

Femtosense Confidential - Do Not Distribute

//Hop size (number of samples) of SPU
#define HOP_SIZE 256

//Initializes the SPU
int initializeSPU();

//Resets the SPU using the reset pin
void SPUReset(int resetPin);

//Sets up the SPU PLL registers
void SPUPLLSetup();

//Turns on all of the SPU memory banks
void SPUMemorySetup();

/* Request to read SPU data.
* instruction: SPU instruction
* address: start address of data requested
* length: length of data requested
* data: buffer for returned data from SPU
&/

void SPU_Read(byte instruction, t32 t address, int length,

* Write data to SPU.
instruction: SPU instruction
* address: start address of write location
* length: length of data to write
* data: buffer of data to write to SPU

void SPU_Write(byte instruction, 32 t address, int length,

//Tests basic SPU register read4
int SPUIntegrityCheck();

Femtosense Confidential - Do Not Distribute

NOTE: the details of nearly all of the following
are buried under the provided driver APIs.
Understanding the following should not be

strictly necessary to use the SPU.

SPI Message Format

Femtosense Confidential - Do Not Distribute

Internally, the SPU has an APB interface. Like the related, more feature-heavy
AXI, APB presents a simple address-mapped interface to the host uC.

The SPU wraps this with an SPI interface, which presents a burst-like interface

(start addr, end addr, followed by streaming data). This is the external interface
available to the user over which all programming and configuration takes place

Femtosense Confidential - Do Not Distribute

SPI Write Sequence

MOSI

The SPI instruction, 8b

start addr, 32b

end addr, 32b

first data word, 32b

second data word, 32b

Instruction]

L»|start addr{7:0] St?rsigdr st[;r;:?g;ir Stg{gg;” -

L»| end addr{7:0] |end addr{15:8] e[’;‘;ﬂ%‘]“ e{’; ;‘1‘;’ -

—»| data[0][7:0] | data[0][15:8] |data[0][23:16] |data[0][31:24] |—

—»| data[1][7:0] | data[1][15:8] |data[1][23:16] |data[1][31:24] —>
— ST!)\(LL, STI)\(LL,

MISO
el
> X
Ly X
L X
> X

— X

Femtosense Confidential - Do Not Distribute

SPI Read Sequence

The SPI instruction, 8b

start addr, 32b

end addr, 32b

first data word, 32b

second data word, 32b

MOSI

Instruction]

MISO

Ll

data[0][7:0]

data[0][15:8]

data[0][23:16]

data[0][31:24]

o] i] e [e
L»| end addr{7:0] |end addr{15:8] 9['503:31'%‘]" e[';: :"izi?f
L,| sTAuL, STALL, STALL, STALL,
X X X &
L X X X X
Lyl X X X 2

—

data[1][7:0]

data[1][15:8]

data[1][23:16]

data[1][31:24]

Femtosense Confidential - Do Not Distribute

Inst Types

In terms of message sequence, reads/writes to all locations look the same. Internally, the timing is a little different
depending on where we're writing to, so we have to tell the SPI controller first thing, in the instruction word.

The SPI module has its own set of registers. In order to access these, SPI_IOREG must be set. The SPI register domain
is used to control the pads and PLL.

The chip is programmed using SPI_APB. This is what you use to program memories, control registers, etc. The PLL
must be active to talk to these registers.

SPI_AXIS is used to stream data into the router. This is how streaming vectors (input/output data) are sent. These
transactions are streams internally. The transaction will stay "open" if SPI_AXIS (not _LAST) is used. Typically, we'll
use SPI_AXIS_LAST, assuming the data is sent in one complete transaction. For SPI_AXIS, the absolute values of the
start/end aren't important, but their difference needs to match the amount of data. It's easiest to think of it as an index
range, @-N.

Femtosense Confidential - Do Not Distribute

Instruction Word Format

MSB

LSB

Inst Type
2b

wr_en
1b

Inst Types

typedef enum logic [1:0] {

SPI_IOREG=0,
SPI_APB=1,
SPI_AXIS=2,
SPI_AXIS_LAST=3
} SPIInstType;

Router Data Format

When sending data in through AXIS commands, the first 64-bit word contains the route and "next PC". The route is
just the core ID that's targeted and the "next PC" is the program counter value of the thread that's supposed to start.
These values will be program-dependent. The first 32-bits is the route, and the next 32-bits is the next PC.
Subsequent words will be the vector that's sent in (length is program-dependent). This is illustrated below:

AXIS Example
Write
Instruction:
The SPI instruction, 8b AXIS_LAST
specify length of transaction, 64b — 0x00 Number of Words * 4 |—
Route to Core
first 2 words, 640 | (0or1) PC]
16-bit 16-bit 16-bit 16-bit
Second 2 words, S | Audio Sample|Audio Sample|Audio Sample [Audio Sample[|
. 16-bit 16-bit 16-bit 16-bit
.2 wards, 530 Ed Audio Sample|Audio Sample|Audio Sample [Audio Sample

the APB address space is organized in "core-size"
chunks: 2**16 * 8

The SPU uses the first chunk for conf registers that
affect both cores. Note, this is not the same as the
SPI conf reg.

The two chunks above that are the primary
memory for each core.

Relative address map for a single core to the right:

Femtosense Confidential - Do Not Distribut.

memory: DM, 64
bank: @
0x00000000
bank: 1
0x00010000
bank: 2
0x00020000
bank: 3
0x00030000
bank: 4
0x00040000
bank: 5
0x00050000
bank: 6
0x00060000
bank: 7
0x00070000
memory: TM, 16
bank: @
0x00080000
bank: 1
0x00090000
bank: 2
0x00020000
bank: 3
0x000b0000
memory: SB, 11
bank: @
0x000c0000

bits wide

(@) — 0x0000fff8 (65528)

(65536) -- 0x0001fff8 (131064)

(131072) —
(196608)
(262144) —
(327680)

(393216)

(458752) —
bits wide

(524288)

(589824)

(655360)

(720896)
bits wide

(786432) —

memory: RQ, 6 bits wide

bank: @
0x000d0000
memory: PB, 10

bank: @
0x000e0000
memory: IM, 63

bank: @
0x0007T0000

(851968) —
bits wide

(917504) —
bits wide

(983040) —

0x0002fff8

0x0003fff8

0x0004fff8

0x0005fff8

0x0006fff8

0x0007fff8

0x00083ff8

0x00093ff8

0x000a3ff8

0x000b3ff8

0x000c01f8

0x000d01f8

0x000e018

0x000f1ff8

(196600)

(262136)

(327672)

(393208)

(458744)

(524280)

(540664)

(606200)

(671736)

(737272)

(786936)

(852472)

(918008)

(991224)

SPI Register Space

Femtosense Confidential - Do Not Distribute

Register Indexing

er N_PLL_CONF = 5
r[N_IO_CONF = 2 + N_PLL_CONF; // numbe
B_IO_CONF = 16 bits per I0 conf r

SPI Addr Data
gr SPI_CONF_IDX = 0@
¢r I0_CONF_IDX 1 -

1=10_CONF_IDX IO Conf Word (pad conf)

2=PLL_CONF_IDX | PLL ConfWord 0

Note that PLL conf reg Misc PLL control bits

occupies 5 addresses 3 PLL Conf Word 1
There are 7 total reg BWADJ
locations 4 PLL Conf Word 2

CLKOD (output divider factor)

5 PLL Conf Word 3

Currently, onjly the Zynq firmware CLKF (mult factor)
accesses this space, the python
driver doesn’t “know” about it 6 PLL Conf Word 4

CLKR (input divider factor)
Femtosense Confidential Lo oot

SPIConf Word

Conf reg for the SPI controller itself

typene’ foIOC*ONFd Foila v Shouldn’t need to touch

L0g1cC _4U_| unuse . .
liaicf s 8] dTaabls roras Can put the SPI in SPI mode 1 (instead of 0)
logic no_half_cycle_delay

SPIConf

function SPIConf get_SPIConf_default
SPIConfT x
X.unused 'Q
x.disable_cores '0
x.no_half_cycle_delay = 1'b@; // default is to have a half-cycle delay, SPI mode @

e return X

Femtosense Confidential - Do Not Distribute

|OConf word

MSB

Logic

Logic

Logic

I0Conf

LSB

typedef struct packed
logic [B_IO_CONF - 11 - 1 : @] unused

osc_en
osc_test_en
fast_slew_en
drive_strength
pull_en
pull_direction
pad_retention_on
0sC_SF1

osc_SF0O

ret_on

{0, 1} (default) = Use

external clock from

FPGA. {1, 0} = make
clock using crystal

SFO/SF1 unused for TC2,

Fixed 32KHz osc

functi

I

o

Fe thfJIV'

Reset values for pad circuit controls and oscillator controls

consider SYNTHESIS=True for osc_en/osc_test _en
defaults

We actually go to the non-SYNTH settings (external clock)
on boot in Zynq code right now

I0Conf X
X.unused

’ for synth,

// for RTL
osc_en

osc_test_en
fast_slew_en

boot

S,

drive_strength

pull_en

pad_retention_on

0sc_SF1
0sc_SF0O
ret_on
curn X
on

X
X

X

X

X
x.pull_direction
X

X

X

X

re

'0

1'b0
1'bl
1'b0
2'b01
1'b0
1'b0
1'bl
1'b0
1'b0
1'b0

into runni
go into test
// 0SC input
/ 0SC input,

/1

on I0Conf get_IOConf_default

// don't care

ng mode (still forceable)
mode, skip 30M ns

// pad slew

!/

, osc off, ref clock active
sing Lx_wrnal clock
norTaL

// second-lowest pad drive
// weak pul
.’/l

L not enabled

/ don't care

/ PVSENSE

/ crystal

// crystal

// pad value

input, pads will hold last value when not
freq range

freq range

retention disabled by default

PLLConf Word

typedef struct packed {

Word 4

Word 3

Word 2

Word 1

Word 0

logic
logic

logic
logic

logic
logic

logic
logic

logic
logic
logic
logic
logic
logic
logic

} PLLConf;

[B_IO_CONF - 6 -

[5 : 0] CLKR;

[B_IO_CONF - 13 -

[12 : 0] CLKF;

[B_IO_CONF - 4 -

[3 : 0] CLKOD;

[B_IO_CONF - 12 -

[11 :] BWADJ;

[B_IO_CONF - 5 -

PWRDN;
BYPASS;
TEST;
FASTEN;
ENSAT;
RESET;

1 : 0] unused4;

1 : 0] unused3;

1 : 0] unused2;

1 : 0] unusedi;

1 : 0] unusedo;

Default multiplier is 500:

F mult=(f+1)/((r+1)* (od + 1))

BWADJ+1 should be half of CLKF+1

= 0x3e8 / [(0x1)(0x2)]

=1000/2
=500

BWADJ = (CLKF+1)/2 - 1

Defaults for PLL, 5 words,
See TCl manual, in “Chip Internal’/TCI_guides

.CLKR[5:0] = 'h0®;
.CLKF[12:0] = 'h@3E7;
.CLKOD[3:0] = 'hi;

.BWADJ[11:0] = 'h1F3;

X X X X

{x.PWRDN, x.BYPASS, x.TEST, x.FASTEN, x.ENSAT, x.RESET} = '0;

IMPORTANT NOTE:

There is a bug in the packing of these 5 words.

When the RESET was added in 1p2, the size of the “unused0”
field was not decremented.

As a result, the 4 upper words are all shifted by a bit.

To program a value of “x”, you should actually set “x << 1”

Femtosense Confidential - Do Not Distribute

Memory Power Configuration

To power on memories: Memory control SPI_APB addresses . —
(8x DM, 4x TM, 1x IM, respectively) Full configuration:

First, put the memory in “CD” state. Write:

0x05098 00000034 : core 0 : DM_CONFO
00000038 : core 0 : DM_CONF1
0000003C : core 0 : DM_CONF2

Then turn each memory on, writing 00000040 : core 0 : DM_CONF3
00000044 : core 0 : DM_CONF4
0x11098 00000048 : core 0 : DM_CONF5

0000004C : core 0 : DM_CONF6
. 00000050 : core 0 : DM_CONF7
To each of the addresses to the right: 00000054 : core 0 : TM_CONFO
00000058 : core 0 : TM_CONF1
0000005C : core 0 : TM_CONF2
00000060 : core 0 : TM_CONF3
00000064 : core 0 : IM_CONF
00000068 : core 1 : DM_CONFO
0000006C : core 1 : DM_CONF1
00000070 : core 1 : DM_CONF2
00000074 : core 1 : DM_CONF3
00000078 : core 1 : DM_CONF4

Note: this is now done by 0000007C : core 1 : DM_CONF5

1 00000080 : core 1 : DM_CONF6
femtodriver, only needed banks are 00000084 - Gore 1 : DM CONF7
powered 00000088 : core 1: TM_CONFO

0000008C : core 1: TM_CONF1
00000090 : core 1 : TM_CONF2
00000094 : core 1 : TM_CONF3

FenftPR09928 : cosrflddMiSPNDo Not Distribute

Complete APB addr space (does not include SPI regs)

HHHAHHHRHHH B R R HHHHHHH R R R
system-wide registers per-core conf registers

HHHAHHH R B R R HHHHHHH R R R
00000000 : VERSION 00000034 : core 0 : DM_CONFO

00000004 : RST 00000038 : core 0 : DM_CONF1

00000008 : DM_TIMERS 0000003C : core 0 : DM_CONF2

0000000C : TM_TIMERS 00000040 : core 0 : DM_CONF3

00000010 : IM_TIMERS 00000044 : core 0 : DM_CONF4

00000014 : REG_DP_ACK_DELAY 00000048 : core 0 : DM_CONF5

0000004C : core 0 : DM_CONF6
00000050 : core 0 : DM_CONF7
00000054 : core 0 : TM_CONFO
00000058 : core 0 : TM_CONF1
0000005C : core 0 : TM_CONF2
00000060 : core 0 : TM_CONF3
00000064 : core 0 : IM_CONF
00000068 : core 1 : DM_CONFO
0000006C : core 1 : DM_CONF1
00000070 : core 1 : DM_CONF2
00000074 : core 1 : DM_CONF3
00000078 : core 1 : DM_CONF4
0000007C : core 1 : DM_CONF5
00000080 : core 1 : DM_CONF6
00000084 : core 1 : DM_CONF7
00000088 : core 1: TM_CONFO
0000008C : core 1: TM_CONF1
00000090 : core 1 : TM_CONF2
00000094 : core 1 : TM_CONF3
00000098 : core 1 : IM_CONF

Femtosense Confidential - Do Not Distribute

Complete APB addr space (does not include SPI regs) cont'd

R R T T
i core 1 primary memory

;;Lﬁ;;;n;z;y#g;#n;;r#};################## T T
00100000 : DM bank 0 start 00200000 : DM bank 0 start
0010FFF8 : DM bank 0 end 0020FFF8 : DM bank 0 end
00110000 : DM bank 1 start 00210000 : DM bank 1 start
0011FFF8 : DM bank 1 end 0021FFF8 : DM bank 1 end
00120000 : DM bank 2 start 00220000 : DM bank 2 start
0012FFF8 : DM bank 2 end 0022FFF8 : DM bank 2 end
00130000 : DM bank 3 start 00230000 : DM bank 3 start
0013FFF8 : DM bank 3 end 0023FFF8 : DM bank 3 end
00140000 : DM bank 4 start 00240000 : DM bank 4 start
0014FFF8 : DM bank 4 end 0024FFF8 : DM bank 4 end
00150000 : DM bank 5 start 00250000 : DM bank 5 start
0015FFF8 : DM bank 5 end 0025FFF8 : DM bank 5 end
00160000 : DM bank 6 start 00260000 : DM bank 6 start
0016FFF8 : DM bank 6 end 0026FFF8 : DM bank 6 end
00170000 : DM bank 7 start 00270000 : DM bank 7 start
0017FFF8 : DM bank 7 end 0027FFF8 : DM bank 7 end
00180000 : TM bank 0 start 00280000 : TM bank 0 start
00183FF8 : TM bank 0 end 00283FF8 : TM bank 0 end
00190000 : TM bank 1 start 00290000 : TM bank 1 start
00193FF8 : TM bank 1 end 00293FF8 : TM bank 1 end
001A0000 : TM bank 2 start 002A0000 : TM bank 2 start
001A3FF8 : TM bank 2 end 002A3FF8 : TM bank 2 end
001B0000 : TM bank 3 start 002B0000 : TM bank 3 start
001B3FF8 : TM bank 3 end 002B3FF8 : TM bank 3 end
001C0000 : SB bank 0 start 002C0000 : SB bank 0 start
001CO1F8 : SB bank 0 end 002C01F8 : SB bank 0 end
001D0000 : RQ bank 0 start 002D0000 : RQ bank 0 start
001D01F8 : RQ bank 0 end 002D01F8 : RQ bank 0 end
001E0000 : PB bank O start 002E0000 : PB bank O start
001E01F8 : PB bank 0 end 002E01F8 : PB bank 0 end
001F0000 : IM bank O start 002F0000 : IM bank 0 start
001F7FF8 : IM bank 0 end 002F7FF8 : IM bank 0 end

Femtosense Confidential - Do Not Distribute

EVK PCB Information

Femtosense Confidential - Do Not Distribute

%)

v

12 PIN PMOD HEADER FEMTOSENSE SPU
vee
n
Cs SPU DVDD VDDA VDD u1
NOST NED hosl SPLMOST 5 VDD
o VDD 0SC_PAD fo12 é—
vss VDI
GND C1 ==C2 SCK 3 L 3 [
6 Vce [Ofu| Ofu| Olu = MSO SRS G [[VDDA| =
7 INT GND RST 60] po oA oI T | a0
RST DVDD CSSPFU 1 79 S cs a0 INT
Lrien O GD D S DVDD VEsA
[[10_TEST CIK GND GND GND HEENEEE
1_GND SPULTC2 =
2 VCC GND
TEST CIK 1 2 TP
R o
== 4 gm D
1
32768KHZ - 12.5pF
FLASH 16MBIT IC oo 0 i l Lcs
2p 2p
vee R4 =
0 GND
w
CS FLASH B4 | rcu B Ve
CS FLASH B4, cop vee X ’
AES0 Déel SOSIO1 RESET#SI03 fabies T o
Pl WPSSI02 SCIK (af2 SCK ;
GND SISI00 [
i —
= GiD
GiD NX23RI635FZUILO
0.8V SWITCHING REG
vee DVDD TR
u 7 o_.lgv 2
CRLE = [1 VDDA TPS
i SV T EERaTEE =t
vos LA2 el TP3
==§§u 2l ex VSELMODE €L VDD TP4 _I_—D
Al R3 -4
GND 10k GND
= TPS62801YKAT
GND Title
= L - Femtosense EVK2 - PMOD board
GND GND GND Size Number Revision
A
Date: 2142023 | Sheet of
File: C:\Users\..\Sheet1.SchDoc | Drawn By-

3

4

TOTTIIUOOTTOw T UT T ST 1T

U TYUT DTOU T UTS

Femtosense Confidential - Do Not Distribute

