SPU-001 FEMTOSENSE

SPU-001 Integration Guide v.0.4

The Femtosense Sparse Processing Unit (SPU) is a self-contained sparse neural network
accelerator with 1 MB on-board SRAM to store parameters. The SPU functions as a
coprocessor to an MCU or other host processor. The host loads the parameters to the SPU
once, then streams the data to be processed through the SPU in real-time. All neural network
processing is handled by the SPU.

By leveraging sparsity in model development and compilation, models that would typically
require several times the raw storage capacity available on the SPU can be compressed to fit.

This guide contains information about designing the Femtosense SPU-001 into your
MCU-based system'. The intended audience is hardware and firmware engineers. Information
about Al model development and compilation is not included, and is contained in other
documents.

Sections 1 and 2 can be used as a quick start guide if you have access to the Femtosense API.
The remaining sections discuss SPI register programming, latency and power optimizations
techniques, and system architecture.

Migrating projects from SPU-001 Test Chip 2 (TC2) released in 2023 to the mass-production
SPU-001 chip released in 2024 is covered in a separate document “Migrating From TC2 to the
Mass Production SPU-001” (available by request).

' This document replaces the previous document “SPU TC2 Firmware Guide”

© 2024 Femtosense, Inc. - Confidential 1

SPU-001 FEMTOSENSE

Table of Contents

1. Hardware Integration...........cccomimniiieerrs s 3
REQUITEIMENTS......eiiiiiiiiiiiiii e e e e e e e e e e e e e e e e et e e e e e e eeetaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaeaaeens 3
Power Supplies and 1O............ s 3
CRIP PINOUL. ...ttt et e s esaessesssesaessseseseeeseeseeeseeeeeeeeeeeeeeeeeaaeeas 4
O =T g o B = 1 1= 4 o P 5
PCB Layout GUIAEIINES.ueiiiiiiiiiiie ettt e e e e e e e e e nneees 6

T || =T T U | USSR 6
Limited Fanout (No Asynchronous INterrupt)..............eeeeeeeiiiiiiiiiieiiiieieeeeeeeeeeeeee e 6
(4o To [9] o101 SO PP 7
Typical Application CiFCUIL............ooo e 7
Example Crystal Part NUMDErS. ... 8
Non-volatile Model StOrage.........ccooiiiiiii b eeeseeaseeeeeeeeeeeeees 8
Example Flash Memory Chips (2 1IMBYLE).........cooooiiiiiiiiii s 9

2. FemtOSENSE APL..... . s 9
Setting UP the AP ..t e e e e 9
F N I U T i) o =PRI 10
Programming Files and Basic Control FIOW.............ccccoiiii . 1"

3. SPI Programming and Register Map..........cccccuiiiiiiiiiiiiiieisissss s s ss s sesssssses s s e s e e s esses s e s ss e 1
ST e I o] 4 4= TR 11

T BT (=TS [1= Lo - 12
] I == Lo IR T=To U 1= o o P 12
INSErUCTION FOM@L... .. i 12
Router Data FOrmat. ...ttt eee e 13
PLL Multiplier/Divider EQUAatION..........ooooiiiiiiii e 14
REGISIEN MDDt e e e e e e e e e e e as 14
SRAM Programiming........coeeee oot e e e e e st e e e e e e s aaabe e ee e e e e s s aanseeeeeeaeeeaannaaeeeeeens 16

L S I ATV o T AVIVZ=Y g @ o {14 0 - 1 o o 1 17
MiINIMIZE CIOCK SPEEA.......ueiiiiiiieieeeeeeeeee e 17
Toggle Clock Speed Using the PLL Output DiVider...........ccuuviiiiiiiiiiiieeceeieeeeee e 17
DiSADIE UNUSEA COIES......uuuueiiiiiiiiiiiiiiiiiieiteieeeeee ettt eeee et e e e eeeeeeeeeeaeeeeeaeaaaaaaaaaaaaaaaaaaaaaaaaaaaaees 18
USE MeMOIY FSIM MOUE. ...ttt a e e e e et e e e e e e e aans 18

5. AINR Latency Optimization..............coueeeiiiiiiiiicciiiiiieess s e e e e e e e e s s e ees 18
Components of End-to-ENd LatenCy.........ooveeiiiiiiiiiiiii 18
Latency Example for Femtosense EVKZ...........o i 19

6. Evaluation Board.......... ... e rn e e e e e e e e r e rrn e rr e e neeenenees 19
Yo 011 1 o F= 1 o3PS 20
PINOUL. ..., 21

03 4 T- 1 4 Ve T8 I Y o 1 22

© 2024 Femtosense, Inc. - Confidential 2

SPU-001 FEMTOSENSE

1. Hardware Integration

Requirements

The SPU acts as a co-processor for neural network inference. The only data interface is via SPI
and the interrupt pin. It does not have its own audio interface or GPIO, so the following
additional components are required:

e Host processor: A 1.8-3.3V 10 MCU that supports SPI communication = 4MHz.
Optionally, the SPU also provides an asynchronous interrupt signal that can be
connected to one of the MCU’s GPIO pins.

e Audio interface: The SPU supports 4-bit weights and 8-bit activations, or 8-bit weights
and 16-bit actications. Depending on the model compute time, different sample rates and
data frame sizes may be supported.

e Non-volatile model storage: This should be at least as large as your model parameters
(up to 1MByte, if your model uses all SPU resources). Larger storage is recommended
to account for file system overhead and in case multiple models need to be stored
simultaneously. If this storage is not available, the model can also be streamed from an
external source such as USB, Bluetooth, or Wi-Fi.

Power Supplies and IO

The SPU is available in a 15-pin CSP package. There are 4 different power supply pins:
DVDD (1.8 - 3.3V): This should be the same voltage as your MCU 10 level
VDDM (0.8V): SRAM memory power

VDDA (0.8V): Nominal core power

VDDA (0.8V): PLL power

Serial data communication is done using standard 4-pin SPI. Additionally, the SPU provides an
optional interrupt signal that can tell the host MCU when an output data frame is ready for
reading.

© 2024 Femtosense, Inc. - Confidential 3

FEMTOSENSE

The pinout of the SPU is shown below (view from the top looking “through the chip”).

SPU-001
Chip Pinout
PiNn # ID
1 SPI_MISO
2 VDD
3 VSS
4 SPI_SCK
5 INT
6 DVDD
7 SPI_MOSI
8 VDDM
9 RST
10 SPI_CS
11 VDDA
12 OSC_PADI
13 VSS
14 VDD
15 OSC_PADO

HE OO
HE OO
HE OO

© 2024 Femtosense, Inc. - Confidential

SPU-001 FEMTOSENSE

PCB Land Pattern

An example PCB land pattern is recommended below. The exposed pad size is recommended
to be 228um. A solder mask defined (SMD) pad design is recommended on the right. All
dimensions are in mm.

15x (& 0.228)

ejelojele

- Symm
Metal Under
Solder Mask % 4’”‘7'026 MIN
Symm Solder Mask AN Exposed
Opening (& 0.228) Metal
Land Pattern Example Solder Mask
(Exposed Metal Shown) Defined Pad

© 2024 Femtosense, Inc. - Confidential

SPU-001 FEMTOSENSE

PCB Layout Guidelines

Full Fanout

If your PCB technology allows, the 3 interior pads should be fanned out so that the INT signal
can be accessed by the host MCU, and the VDDA and VDDM signals can be decoupled
separately from VDD. Using the recommended SMD land pattern dimensions, a 280um
via-in-pad can be used to escape these 3 interior pads as shown in the example below:

Example PCB layout with full fanout (interior pads escaped). Red=L1 Copper, brown=L2
Copper. The 3x dual-color circles indicate via holes between L1 to L2. Pin 1 is in the bottom-left.

Both VDD and VSS pins should be connected.

Limited Fanout (No Asynchronous Interrupt)

Optionally, if appropriate via-in-pad technology is not available, pins 8 (VDDM), 11 (VDDA), and
14 (VDD) can be routed together, then pin 5 (INT) should be disconnected as shown in the
example below:

Example PCB layout with limited fanout. Red=L1 Copper. Pin 1 is in the bottom-left.

© 2024 Femtosense, Inc. - Confidential 6

SPU-001 FEMTOSENSE

Do not route the 0.8V from pin 2 to pin 8 through pin 5, as pin 5 can generate 10 level voltage
(>>0.8v).

Both VDD and VSS pins should be connected.

If using this limited fanout routing, the asynchronous INT signal will not be accessible by the
host MCU. The INT pin is an asynchronous signal that indicates when SPU inference data is
waiting to be read back (i.e. each time the model running on the SPU is done processing one
set of inputs). If this asynchronous INT signal is disconnected, the INT signal can alternatively
be read by polling an SPI register.

Clock Input

The SPU requires a reference clock for its Internal PLL. This can be an externally generated
clock (full swing digital signal at IO voltage level), or a 32.768KHz crystal oscillator excited by
the SPU’s built-in oscillator pad (as shown in the next section). The PLL can then be configured
to output a multiplied system clock to the cores.

Typical Application Circuit

For an external clock reference, the following schematic shows a typical application circuit.
Purple signals represent SPU control 10 from adjacent systems (e.g. host MCU). PSU_EN is
optional, and only required if your system is sensitive to boot-up power consumption so that the
SPU boot sequence can be precisely controlled. Ideally, the SPU’s power rails are brought up
with the reset held. This could help prevent an indeterminate state (with indeterminate power
consumption) if the SPU is powered up while not under reset.

vVCC 0.8V
RST RST
L IN ouT j VDD (2)
VDDA R
PSU EN — EN PD
GND VDDM
0.8V Regulator
0SC_PADI——CLK
0SC_PADO—X
DVDD INT——INT
SPI_CS}|——Cs
SPI_MISO|——MISO
SPI_MOSI——MOSI
VSS (2) SPI_SCK——SCK

SPU-001

If using the limited fanout layout in the previous section, only one Cj, is needed for the combined
VDD/VDDA/VDDM connection (in addition the Cp on DVDD), and INT can be disconnected. For
a crystal oscillator reference, the schematic below shows a typical application circuit. Limited
fanout routing can also be used with this circuit.

© 2024 Femtosense, Inc. - Confidential 7

SPU-001

VCC

—L IN ouT

PSU_EN —— EN GND

0.8V Regulator

FEMTOSENSE

RST RST
VDD (2)
VDDA Rep
VDDM
0SC_PADI
0SC_PADO
pvbD INT——INT Rrs
SPI_CS——CS Rg
SPI_MISO——MISO
SPI_MOSI——MOSI Y
VSS (2) SPI_SCK——SCK D

SPU-001

The following values are used in the schematics:

Symbol Value Comment

Co 100nF +/-20%

C. 22pF +-1%

Y 32.7680KHZ 12.5pF load, 70KQ ESR
Rrs 4.7MQ +-1%

Rs 1Q +-1%

Rep 100KQ Optional

VCC 10 Voltage (host voltage) 0.8V -3.3V

Femtosense can provide additional details about alternative crystals or reference clocking
architectures not included above. Example crystal parts are given below:

Example Crystal Part Numbers

Manufacturer

Part Number

Size

Temperature Rating

Abracon LLC

ABS07-32.768KHZ-T

3.20mm x 1.50mm

-40°C ~ 85°C

Micro Crystal

CMB8V-T1A-32.768KHZ-

2.0mm x 1.2mm

-40°C ~ 125°C

12.5PF-20PPM-TB-QC

Non-volatile Model Storage

The SPU stores its model parameters in volatile SRAM, so it must be programmed after power
up. Since SPU SRAM size is 1MByte, you should have at least 1MByte of dedicated non-volatile
storage in your system in order to store model parameters. This can be in the MCU flash,

© 2024 Femtosense, Inc. - Confidential 8

SPU-001

FEMTOSENSE

external flash, or similar non-volatile storage. Parameters could also be streamed over a
bluetooth or wifi radio through the host MCU if the device is connected to another system in this
way. The following table shows a list of example low-power SPI Flash memory chips with the
same |0 voltage range as the SPU, but any non-volatile storage of similar size and |0 voltage

will work.

Example Flash Memory Chips (= 1MByte)

Manufacturer | Part Number

Package/Size

Capacity

10/Supply Voltage

Macronix MX25R8035FBDILO

WLCSP /
1.52mm X
1.25mm

1 MByte

1.65V ~ 3.6V

Macronix MX25R8035FZUILO

USON /
2.0mm X
3.0mm

1 MByte

1.65V ~ 3.6V

Macronix MX25R1635FBDILO

WLCSP /
1.99mm X
1.58mm

2 MBytes

1.65V ~ 3.6V

Macronix MX25R1635FZUILO

USON /
2.0mm X
3.0mm

2 MBytes

1.65V ~ 3.6V

Macronix MX25R3235FZBIL0

USON /
4.0mm X
3.0mm

4 MBytes

1.65V ~ 3.6V

2. Femtosense API

Setting up the API

First, the following simple wrapper functions in spu001.c should be implemented in order to

connect the API to your hardware:
SpulnterruptRead()
SpuDelayUs()
SpuResetEnable()
SpuResetDisable()
SpuSpiEnable()
SpuSpiDisable()
SpuSpiWrite()
SpuSpiRead()

© 2024 Femtosense, Inc. - Confidential

FEMTOSENSE

Once these are implemented, the following functions can be used to control the SPU.

API| Functions

Femtosense provides an API written in C to communicate with the SPU001. These functions are
included in spu001.c and spu001.h, and cover the main functionalities as described below:

Spulnit(): Initializes the SPU, including power-up and reset sequence. It checks that the
SPU is connected properly, and should be called first before any of the other functions.
SpuWriteModelValue() and SpuWriteModelBatch(): Writes model and memory
configuration parameters from non-volatile storage.

SpuWriteData(): Writes one frame of input data (e.g. audio, sensor data) for the SPU to
process.

SpuReadData(): Reads the result of one frame of input data. This should not be called
before checking that the interrupt value = 1 indicating that SPU output data is available.
SpuEnableCores(): Enables or disables individual SPU cores. This is useful if your
model does not need both cores, or if a particular core can be turned off to save power.
SpuEnterSleepMode(): Activates the PLL output divider to reduce the clock speed to
the cores. This can be done to save power when the core does not need the full speed
clock (e.g. during some IO transfer or idle periods.)

SpuExitSleepMode(): Disables the PLL output divider.

SpuPollinterruptPin(): Polls the interrupt signal using the SPU interrupt pin.
SpuPollinterruptRegister(): Polls the interrupt signal using the SPU SPI register.

NOTE: The Femtosense API does not currently fully directly support the power optimizations
described in Section 4. You may use the open source EVK2v2 code as a reference example.

Before initializing the SPU with Spulnit(), create a SpuConfiguration variable and initialize it
with the values that reflect the hardware configuration:

Clock_type: Either kSpuExtClk indicating that an external clock is used, or kSpuOsc
indicating that the SPU-controlled crystal oscillator is used.

Crystal_frequency_hz: The frequency of the SPU-controlled crystal oscillator (if used)
Core_clock_frequency_mhz: The PLL output frequency when the output divider is set
to 1.

Spi_clock_frequency_mhz: The SPI clock frequency of the host processor. For smaller
algorithms such as Wake Word Detection (WWD), Google Speech Commands (GSC),
Spoken Language Understanding (SLU), and power-optimized Al Noise Reduction
(AINR), 100MHz is a good place to start. For larger algorithms such as latency-optimized
AINR, 200MHz is a good place to start. Information about selecting the optimal
Spi_clock_frequency_mhz is discussed in Section 4.

© 2024 Femtosense, Inc. - Confidential 10

SPU-001 FEMTOSENSE

Programming Files and Basic Control Flow

In order to use the SPU, you first need compiled programming files that contain address/data
pairs of your model parameters. Once this is loaded in your non-volatile model storage, the
basic control flow required to use the SPU is as follows:

1.

2.

Call Spulnit() with the SpuConfiguration matching your hardware. An error will be
returned if initialization fails, use SpuResultToString() to get a description of the error.
Load the SPU with your model parameters by calling SpuWriteModelValue() for every
address/data pair in your programming file. If address writes are sequential (the address
locations differ by 4), SpuWriteModelBatch() can be used to write one stream of data
to a sequence of addresses in order to save overhead.

For every frame of data, send the data frame as an array of 16-bit integers using
SpuWriteData().

Wait for the SPU interrupt to equal 1. The SPU interrupt can be read from the interrupt
pin using the host’'s GPIO, or by calling SpuPollinterruptPin().

Read the processed data frame (result) from the SPU using SpuReadData().

Repeat steps 3-5 for every frame of data.

3. SPI Programming and Register Map

If you do not use the Femtosense API, you can program the SPU by directly manipulating
registers.

SPI| Format

The SPU communicates using SPI MODEO with clock speeds 4MHz - 50MHz. The following
sections show the read and write formats.

© 2024 Femtosense, Inc. - Confidential 1

SPU-001

SPI Write Sequence

FEMTOSENSE

MOSI MISO
The SPI instruction, 8b Instruction e
sartader, 320 —>startaderro) SR | SEOE | SRS L Ll x X x X T
end addr, 320 » end addr7:0] lend addr[15:8] ”["2“3"‘;%? '?[';‘11 ;‘l‘]” > X X X X ‘
st dataword, 32p | datal0]7:0] | datalO]15:8] |datal0]23:16] | datal031:24] — Lsl x % X X T
cocond dataword, 320 —>| datal{l70] | data[1]15:8] |data[1)[23-16] | data[1)[3124) —> Lsl x X X x L
| ST STALL I .
SPI Read Sequence
MOSI MISO
The SPI1 instruction, 8b Instruction X ..
start addr, 32b >|start addif7:0] 5‘?{'5&3‘;“’ sgg_?gf' ng_ggf' — L x x x X T
endaddr 326 —>|end addri7:0] |end addr{15:8] E['g:':“"i‘]“ "[r;_;‘;‘]ﬂ Ly X X X X \‘
ST;;LL ST.;LL, ST;LL ST.;LL, Ll X X x X 7
first data word. 32b > X X X X »| data[0][7-0] | data[0][15.8] |data[0][23.16] |data[0][31:24]
|
second data word, 320 L b3 X X X — L data[1)[7-0] | deta[1)[15:8] |data[1][23:15] |data[1)3124) — >
Instruction Format
The format of the instruction byte is shown below:
© 2024 Femtosense, Inc. - Confidential 12

SPU-001 FEMTOSENSE

MSB LSB
Inst Type |wr_en
u 2b 1b

Where wr_en=1 for writing data and wr_en=0 for reading data. Instruction types (Inst Type) are
given in the table below:

Instruction Type Value (2b) Description

IOREG 0x00 Read/write to registers listed in the Register Map below

APB 0x01 Read/write to the APB address space (e.g. SRAM)

AXIS 0x02 Read/write data to the SPU Router (input/output data to model). For

writes, this instruction is used to break up an input into multiple SPI
transactions. AXIS_LAST must be used as the last message. E.g. a
multi-part message could be as four transactions: AXIS, AXIS, AXIS,
AXIS_LAST. However, the header “Route to Core” and “PC” should only
be included in the first message.

AXIS_LAST 0x03 Read/write the last data to the SPU Router. Processing will begin after the
final byte is written with this instruction. Can be used for a single complete
input message.

Router Data Format

Data frames sent to the SPU for processing use the AXIS/AXIS_LAST instructions using the
format shown below. This is the same format as the SPI read/write, but includes a header in the
first two worlds before the samples are read/written.

AXIS Example
Write Read
- Instruction: Instruction:
Write the SPI instruction, 8b AXIS_LAST |— Write the SPI mslrucm;:ossr: AXIS. LAST
Mos (write) (read)
Write length of transaction, 64b Number of Words to Write in Bytes Write length of transaction, 64b Number of Words to Read in Bytes
> 0x00 N 0x00 B N
MOSI (Number of samples /2 +2)* 8 MOSsI (Number of samples /2 + 2) * 8

18-bit
|Audio Sample

16-bit
Audio Sample

16-bit
Audio Sample

Write second 2 words sent, 64b
MOSI

Write first 2 words, 64b Route to Core PC Write stall bytes, 32b >| 16-bit 16-bit
MOSI (Dor1) MQsI Stall Stall

16bit | Read first 2 words, 64b Route from Core -
Audio Sample MISO {Qor1)

Read second 2 words, 64b each ’

Write additional words, 64b each 16-bit 16-bit 16-bit 16-bit
MOSI MISO Audio Sample |Audio Sample |Audio Sample |Audio Sample
Write stall bytes, 16b 16-bit Read additional words, 64b each ,: it 1 H
MOSI Stall MISO 3Audm SampleiAud\a Sample ;Audie Sam) Audio Samplei

© 2024 Femtosense, Inc. - Confidential 13

SPU-001 FEMTOSENSE

PLL Multiplier/Divider Equation

The PLL multipliers and dividers are illustrated in the diagram and equation below:

Reference Input . L Core Clocking
Clock Divider Multiplier Output Divider Clock Gate (System Clock)

Core0
External Clock
or F» = (CLKR+1) 3 * (CLKF+1) [—»+ (CLKOD+1)>» Clock Gate

Crystal
T Core1

CLKEN

System Clock Frequency = Reference Clock * (CLKR S_Ci;((i:KgD+ 5

The PLL Bandwidth factor is also required when setting up the PLL:

BwAp] =85+

For normal operation, the clock gate can be set to CLK_EN=1.

© 2024 Femtosense, Inc. - Confidential 14

SPU-001

Register Map

FEMTOSENSE

A map of the SPI registers is given below. These can be accessed using the IOREG instruction
(0x00). Each register is 32-bits wide.

SPlI Address Register
Location Name Description Bit Bit Name Description Default
Core Reset
11 CORE_RESET (1=reset) 1
10 <unused> <unused> 0
9 <unused> <unused> 0
8 <unused> <unused> 0
7 <unused> <unused> 0
6 <unused> <unused> 0
5 <unused> <unused> 0
4 <unused> <unused> 0
3 <unused> <unused> 0
2 DISABLE_CORE_1 Disable Core1 1
1 DISABLE_CORE_O0 | Disable Core0 1
NO_HALF_CYCLE_ |SPI mode (0 or
0x00 SPI_CONF_IDX SPI Conf 0 DELAY 1) 0
Interrupt Enable
11 INT_EN (1=enabled) 0
10 OSC_EN oscillator enable 0
oscillator test
9 OSC_TEST_EN mode enable 1
pad fast slew
8 FAST_SLEW_EN mode enable 0
pad drive
strength (higher
7:6 DRIVE_STRENGTH value = more) 0x01
weak pull
5 PULL_EN enable 0
4 PULL_DIRECTION <unused> 0
PVSENSE input
pull_direction,
pads will hold
PAD_RETENTION_ last value when
3 ON not powered 1
osc_SF1 crystal
frequency range
2 OSC_SF1 configuration 0
0x04 IO_CONF_IDX 10 Conf (pad conf) 1 OSC_SFO0 osc_SFO crystal 0
© 2024 Femtosense, Inc. - Confidential 15

SPU-001 FEMTOSENSE

frequency range
configuration

pad retention

0 RET_ON enable 0
enable PLL
output clock

6 CLK_EN gate 0
power down pll
(1=powered

5 PWRDN down) 1
bypass
reference clock

4 BYPASS through PLL 1

3 TEST PLL test enable 0
fast pll turn on

2 FASTEN enable 0
Enable PLL
saturation
behavior (do not

1 ENSAT change) 0

0x08 PLL_CONF_WORDO Misc PLL Control 0 RESET reset pll 1
PLL bandwidth

0x0C PLL_CONF_WORD1 PLL BW ADJ 11:0 BWADJ value 0x1F3
PLL output

0x10 PLL_CONF_WORD2 CLKOD 3:0 CLKOD divider value 0x01
PLL clock

0x14 PLL_CONF_WORD3 CLKF 12:0 CLKF multiplier value 0x3E7
PLL input

0x18 PLL_CONF_WORD4 CLKR 5:0 CLKR divider value 0x00
PLL Lock

0x1C PLL_LOCK PLL_LOCK 0 PLL_LOCK indicator 0x00

0x20 <unused> <unused>
Interrupt Value
(0] = not
interrupt, 1 =

0x24 INTERRUPT Interrupt Read 0 INT interrupt) 0x00

SRAM Programming

A compiled SPU model will generate the files OPROG_A and OPROG_D that contain the data
that should be loaded into the SPU’'s SRAM to enable the model. A snippet of these files is
shown below:

© 2024 Femtosense, Inc. - Confidential 16

SPU-001

4r OPROG_A

1

00000064
00000064
00000034
00000034
00000038
00000038

0000003 c
0000003 c
00000040
00000040
00000044
00000044
000000438

4»r

OPROG_D

00005098
00011098
00005098

00011098

00005098
00011098
00005098
00011098
00005098
00011098
00005098
00011098
00005098

FEMTOSENSE

Each line of OPROG_D contains the value that should be written to the corresponding memory
location in OPROG_A. For example, to write the first line in the snippet above, the value
0x00005098 should be written to location 0x00000064. Every line in these files should be
written to the SPU. Write using the instruction 0x01 (APB).

4. Low-power Optimization

In order to minimize the SPU’s power consumption, the following optional optimizations should
be done in firmware. If these are not done, the SPU will still function correctly, but will consume
more power than necessary.

Minimize Clock Speed

The clock speed seen by the cores (after the PLL output divider) should be minimized as slow
as possible while still allowing for the SPU to complete processing during the size of the data
frame. Since the interrupt signal asserts when the data frame is done processing, you can make
sure that the data processing is completed in time by checking the frequency of this signal. For
example, for a 4ms data frame, the interrupt signal should look like the screenshot below, firing
exactly every 4ms. If the time between interrupt pulses is longer than the frame size, the clock
speed should be increased.

© 2024 Femtosense, Inc. - Confidential 17

SPU-001 FEMTOSENSE

| % Logic 2 [Logic16 - Connected] [Session 0]

| File Edit Capture Measure View Help

+20 ms +30 ms

" 3.90397 ms

~ 3.99993 ms

Session 0

Although the clock speed should be minimized, it is important that the PLL output before the
output divider is =2 30MHz in order to maintain stability. During data 10, the output of the clock
divider must also be greater than 2 times the SPI SCK frequency.

Toggle Clock Speed Using the PLL Output Divider.

The PLL output divider can be used to lower the core clock speed to < 30MHz for algorithms
that are very small or do not require processing.

It can also be used to lower the core clock speed when data is not being processed (e.g., during
data 10). However, it is important that during APB or router 10, the output of the clock divider is
at least 2 times the SPI SCK frequency. If the output divider is too large, it must be lowered
before accessing any APB or router data.

NOTE: that the output divider can only be set to 1 or an even positive number less than or equal
to 16.

Disable Unused Cores

Some algorithms can be compiled to only use Core0. In this case, Core1 can be disabled by
setting DISABLE_CORE_1 =1 or the SpuEnableCores() function in the API.

Use Memory FSM Mode

During memory configuration (typically included in first lines of the compiled programming file),
the memories can be configured to use internal FSM control for their power states. In this mode,
the memories will sleep automatically after a preprogrammed delay. This typically saves some
power. During programming, the normal memory configuration routine will write 0x11098 to the

© 2024 Femtosense, Inc. - Confidential 18

SPU-001 FEMTOSENSE

memory configuration register (0x34 < APB address < 0x98). To enable FSM control, write
0x15098 instead of 0x11098 to the memory configuration register.

5. AINR Latency Optimization

AINR systems are latency sensitive since the user will expect to hear the noise-reduced audio
at the same time they experience it visually. If the latency is too high, the user will also hear an
echo of their own voice in the output of the algorithm. If optimizing for overall latency, it is
important to understand the three places where latency is generated:

Components of End-to-End Latency

e Algorithm Latency: Latency inherent to the algorithm due to the overlap-add associated
with the Short-Time Fourier Transform and its inverse. Each audio frame received by the
SPU is processed alongside the previous input frame. This step generates an output
audio frame corresponding to the previous input frame. The resulting latency is 2x the
hop size, where the hop size is the time between audio frames.

e Compute Latency: Time taken by the SPU to compute the algorithm. This is at most 1x
the hop size, as the algorithm must complete once per audio frame to keep up with the
audio stream.

e Additional System Latency: Host buffering in the microcontroller, codec,
analog-to-digital converter, and digital-to-analog converter, if any. For example, on the
Femtosense Evaluation Kit 2 (EVK2), the host consists of a Teensy 4.1 microcontroller
and T1 TLC320AIC3206 audio codec. After firmware implementation, this latency is:

17 sample ADC queue + 21 sample DAC queue + 1 hop host audio queue

Summing these parts results in the End-to-end Latency. In order to minimize latency, you
should optimize your system to reduce these three components.

Latency Example for Femtosense EVK2

As an example, when using 16KHz audio and a 1ms hop AINR algorithm on the EVK2, the
End-to-end Latency is then:

2ms algorithm + 1ms compute + (~1ms ADC queue + ~1.5ms DAC queue + 1ms host queue)
=~ 6.5ms

The figure below details the latency of the audio samples as they are processed:

© 2024 Femtosense, Inc. - Confidential 19

https://www.pjrc.com/store/teensy41.html
https://www.ti.com/product/TLV320AIC3106

SPU-001

Physical Audio Input

Codec ADC

Host Data Availability
(Through Audio Library)

SPI MOSI
(input to SPU)

Compute (SPU)

SPI MISO
(output from SPU)

Codec DAC

Physical Audio Output

EVK2 End-to-end Latency with AINR on:
2 hop algorithm +1 hop compute + ~2.5ms ADC/DAC + 1 Hop Host = 6.5ms

FEMTOSENSE

Hop 0 Hop 1 Hop 2 Hop 3 Hop 4 Hop § Hop 6 Hop 7 Hop N
ADC Queue
17 samples (~Ims)| Hop 0 Hop 1 Hop 2 Hop 3 Hop 4 Hop § Hop 6 Hop N-1
Host Queue:
1 Hop (1ms) Hop 0 Hop 1 Heop 2 Hop 3 Hop 4 Hop N-3
Hop 0 Hop 1 Hop 2 Hop 3 Hop 4 Hop N-3|
0x00 Hop 0 Hop 1 Hop 2 Hop 3 Hop N-4
DAC Queue: % . .
21 samples (~1.5ms) 0x00 Hop 0' Hop 1 Hop N-6'
0x00 Hop 0' Hop 1" Hop N-6'
T I I I T I I |
1ms 2ms Sms 6ms 7ms 8ms N ms N*1+1ms

0ms

6. Evaluation Board

In addition to evaluation kits (EVKs), Femtosense also provides an evaluation board for the
mass-production SPU called Evaluation Board 4 (EVB4). The schematic for this board is shown
below. This board connects to the host processor through J1’s PMOD-like interface (PMOD type
2A), and can be configured to use either an external 10-level reference clock TEST_CLK, or the
crystal oscillator circuit near Y1, using J3 and J4.

© 2024 Femtosense, Inc. - Confidential

20

https://digilent.com/reference/_media/reference/pmod/pmod-interface-specification-1_2_0.pdf
https://digilent.com/reference/_media/reference/pmod/pmod-interface-specification-1_2_0.pdf

FEMTOSENSE

SPU-001

Schematic

[_ £ z I
Agumeq | SO FHAT @AA AND i
Jo_PAS | ¥ZOZIZO/T 21eQ ano
01 v YIAIFEEISAL (ymop-jing jewaiur T540sk) =
uoIsIATY 15qUInN o718 aND aND NT = NA NSd
PHAH MOOIDQW 25UasOJWa — == dOLS aNo == (A€'9 ‘LLX “%07) 4L}
LASA 9 = 01D
=l € " qaow
(A£9 LLX “%07) An01 ’ 3 (A£9 “S9X %0T) ALy
6 D 80=—
a-0-L0- T
H T SOA
V81 ‘OW9[) HAT T
S-D-L07101-MS1 £ ¥ £n
st S
h —t
aaA 8A0 DA A
VAAA SA0 JUAUDANSEIJY] TU2LIN]) 10,] -
WAGA $A0 A
i 8
memOnﬁ umu..ﬁ (barec HOHNMBWDM wdbﬂoﬁam >w O
w0
£
LEE DOA IEA DDA IBA (ND (ND
o e 2QUUOISI se T T
= = } 'd yserd (A0S “0dN D0D %1) 9gT | (A0S “0dN DD %1) 1dzT
Fé5 10==
(AOT MLX 2%01) 1U001 (ADT “MLX %01) 41001
90 Cop——
H OTHZASETEASTXN AND DO-HL-Wdd0T-19g T 1-ZHAS9L TE-¥ LL-ASIND
zn = 1A
QaA 8A0 AAAd e ano zavam 1 (Dol
= : 01 ol .
I 00IS/1S 1avda (%1) GNLT
aND aND ISON ¢ [
= = e)\/_/m_
(ADT “LX *2401) Ju00T P B (01508 &
(ADT “LX *2%01) U001 (AOT “MLX *%01) AU001 5|_| Useld DA E.,_ B s | OSTN
8] = T HSVI SO q IVIX T IVIX
1 _
H 1 YSBLL DOA A YsELL DDA A
VAGA 8AD WAdA 8A0

yseld NEINTE 10Je[[195O) [e3SKID)

AND
dSD-100-NdS —_
n
SSA
o5 oS .S SSA
aND ROW L] SOW IS
= { OSIN 1dS aaaa
= OSIN 1| oojue g
nas S5 o | Yirus vaaa ZPEOEBE-0S ZrZ0E6E-05W
INT € 11 ¥r er 1201TT10€19
- . I
(41 00T avd 280 §1 M%M.muwwu UTATES | 10 1SHL 1 avd O8O i
2 iavd oS0 ¢l T S0 T dIVIX ¢ NdS s 1 L NI
W . | I T IVIX € aND 1SO T 8 IS} (aND
sy 6 7 1 . = 081 3 6 HSVIIS) =
e) R 01 1D ISHL
=4 ON € T ;
aaa x_..z‘/m_c‘/ SA0 N¥20[D [EwWAxXT “:Ew..ﬂ_,d_ ¥201D [ewu NT nsd 9 wﬁ_ I_l
A 8/) e oy~ N4 [4
VAGA 8AD_| D MSTNELY
AAAT A
MOO|DQW DmEDmOu—Evh— EOSNHBM@EOU MOO—U .ﬂuﬂumﬁu: QOE& C_‘Aw N~
[_ 3 7 T I

21

© 2024 Femtosense, Inc. - Confidential

FEMTOSENSE

The pinout of the main header J1 is pin-compatible with the Digilent PMOD interface type 2A

SPU-001
Pinout
specification:
7 L1
- . 10 ~
8 2 2.54 mm
9 V3
100 ¢4
10"
110 OS5 [254mm |
12 (n 6
I .
A5
[3.81 mm—|
- A5
3.81 mm

Pin | Description Note

1 SPI Chip Select for SPU-001 active low

2 SPI MOSI signal Mode 0

3 SPI MISO signal Mode 0

4 SPI SCK clock signal Mode O

5 Ground Mode 0

6 PSU_EN* Enable 0.8V regulator (active high)

7 SPU Interrupt signal

logic high when data frame is ready

8 SPU Reset signal

active high

9 SPI Chip Select for onboard flash chip

PN: Macronix MX25R3235FZBILO

10 Reference Clock for SPU VCC level
11 Ground
12 VCC 1.8V-3.3V

*For standard PMOD type-2A, PSU_EN = HIGH.

© 2024 Femtosense, Inc. - Confidential

22

SPU-001 FEMTOSENSE

SPU current consumption on each of its rails can be measured with an ammeter on the labeled
rows of J2.

7. Change Log

Version Release Date | Description

0.1 2024-02-05 Initial release replacing “SPU TC2 Firmware Guide”
(Provisional)

0.2 2024-02-20 Added more PCB specifications

(Provisional)

0.3 2024-03-08 Added example Flash, crystal, OPROG format, and API
(Provisional) setup instructions.

0.4 2024-03-20 Corrected router data format chart.

© 2024 Femtosense, Inc. - Confidential 23

